EEE130 Digital Electronics I Lecture \#6

- Functions of Combinational Logic -

By Dr. Shahrel A. Suandi

Topics to be covered

- 6-1 Basic Adders
- 6-2 Parallel Binary Adders
- 6-3 Ripple Carry versus Look-Ahead Carry Adders
- 6-4 Comparators
- 6-5 Decoders
- 6-6 Encoders
- 6-7 Code Converters
- 6-8 Multiplexers (Data Selectors)
- 6-9 Demultiplexers
- 6-10 Parity Generator/Checkers

6-1 Basic Adders

- There are full-adder and half-adder
- Half-adder:
- The half-adder accepts two binary digits on its inputs and produces two binary digits on its outputs, a sum bit and a carry bit
- Similar to XOR
- Full-adder:
- The full-adder accepts two input bits and an input carry and generates a sum output and an output carry

Symbols used for adders

 Half-adder

Full-adder

A	B	Cout	Σ
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

A	B	Cin	Cout	Σ
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

6-2 Parallel Binary Adders

- More than two full-adders can be connected to form parallel binary adders
- How they are arranged?
- Parallel/cascade by connecting $C_{\text {out }}$ from the lower bit to $C_{\text {in }}$ in a higher bit
- Why they are needed?
- To add binary numbers more than 2 bits; ie. For 2-bit numbers, 2 adders are needed; 4-bit numbers, 4 adders are needed, and so on
- What important things that we should remember?
- A full adder can be used instead of half adder - the LSB concerned full adder must be connected to ground
- Let's see everything graphically...

Block diagram of 2-bit and 4-bit parallel adders

74LS283 4-bit parallel adder

(a) Pin diagram of 74LS283

Adder expansion

(a) Cascading of two 4-bit adders to form an 8-bit adder

(b) Cascading of four 4-bit adders to form a 16-bit adder

6-3 Ripple Carry Versus LookAhead Carry Adders

- There are two categories for parallel adders:
- Ripple carry
- Look-ahead carry
- These two categories are fixed by evaluating how each internal carries are handled from stage to stage
- The difference - speed of adding numbers - Look-ahead carry adder is much faster than ripple carry adder

Ripple carry adder

- A ripple carry adder is one in which the carry output of each full-adder is connected to the carry input of the next higher-order stage
- Why delayed/slow?
- The sum and the output carry of any stage cannot be produced until the input carry occurs

Look-ahead carry adder

- The look-ahead carry adder anticipates the output carry of each stage, and based on the inputs, produces the output carry by either carry generation or carry propagation

Generated carry

Propagated carry/
Generated carry

6-4 Comparators

- The function is to compare the magnitudes of two binary quantities to determine the relationship of those quantities
- Equality

General format: $\begin{aligned} & \text { Binary number } A \rightarrow A_{1} A_{0} \\ & \text { Binary number } B \rightarrow B_{1} B_{0}\end{aligned}$

- Inequality

A 4-bit Comparator (74HC85)

How to connect two 74HS85s

6-5 Decoders

- A decoder is a digital circuit that detects the presence of a specified combination of bits (code) on its inputs and indicates the presence of that code by a specified output level
- Tips to remember when to use decoders:
- Code (BCD, etc.) \rightarrow Decimal numbers, etc.

A 1-of-16 Decoder (74HC154)

6-6 Encoders

- An encoder is a combinational logic circuit that essentially performs a "reverse" decoder function
- Tips to remember when to use encoders - Decimal/octal \rightarrow BCD or binary

A Decimal-to-BCD Encoder (74HC147)

(a) Pin diagram

(b) Logic diagram

6-8 Multiplexers

- A multiplexer (MUX) is a device that allows digital information from several sources to be routed onto a single line for transmission over that line to a common destination
- Also known as "data selector"

A1-of-4 data selector/multiplexer ()

A quadruple 2-input data selector/multiplexer (74HC157)

(a) Pin diagram

(b) Logic symbol

6-9 Demultiplexers

- In contrast to Multiplexers, demultiplexers (DEMUX) is a device used to distribute a digital information from one line to multiple number of output lines
- Also known as "data distributor"

The 74HC154 decoder used as a demultiplexer

$$
\begin{gathered}
\text { 6-10 Parity } \\
\text { Generators/Checkers }
\end{gathered}
$$

- Used to check errors while digital codes are transferred from one point to another within a digital system
- Please check previous lecture notes for more details on how parity is checked

Wish you all...
 ALL THE BEST IN YOUR FINAL EXAM!!!

Thank you.

